Systematic Asynchrony Bug Exploration
for Android Apps

Burcu Kulahcioglu Ozkan'®? | Michael Emmi?, and Serdar Tasiran!

! Kog University, Istanbul, Turkey
{bkulahcioglu,stasiran}@ku.edu.tr
2 IMDEA Software Institute, Madrid, Spain

michael.emmi@imdea.org

Abstract. Smartphone and tablet “apps” are particularly susceptible to
asynchrony bugs. In order to maintain responsive user interfaces, events
are handled asynchronously. Unexpected schedules of event handlers can
result in apparently-random bugs which are notoriously difficult to repro-
duce, even given the user-event sequences that trigger them.

We develop the AsyncDroid tool for the systematic discovery and
reproduction of asynchrony bugs in Android apps. Given an app and
a user-event sequence, AsyncDroid systematically executes alternate
schedules of the same asynchronous event handlers, according to a
programmable schedule enumerator. The input user-event sequence is
given either by user interaction, or can be generated by automated UI
“monkeys”. By exposing and controlling the factors which influence the
scheduling order of asynchronous handlers, our programmable enumera-
tors can explicate reproducible schedules harboring bugs. By enumerat-
ing all schedules within a limited threshold of reordering, we maximize
the likelihood of encountering asynchrony bugs, according to prevailing
hypotheses in the literature, and discover several bugs in Android apps
found in the wild.

1 Introduction

Android apps execute asynchronously: typically a number of background threads
exist to prevent long-running tasks from tying up the main Ul thread. Threads
execute asynchronously-called procedures concurrently with other threads. Pro-
grammers tend to imagine atomically-handled events, without taking all possible
thread interleavings into consideration. However, event handlers often call other
asynchronous methods, and so the execution of multiple events can interleave
and result in hard-to-reproduce bugs.

In this work we present AsyncDroid', the first concurrency testing tool for
Android apps. AsyncDroid takes a sequence of user events given by user inter-
action or automated UI “monkeys” and explores different thread interleavings to

This work is supported in part by the Scientific and Technological Research Council
of Turkey (TUBITAK).

! http://github.com/imdea-software /async-droid.

© Springer International Publishing Switzerland 2015

D. Kroening and C.S. P&siareanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 455-461, 2015.
DOI: 10.1007/978-3-319-21690-4_28

http://github.com/imdea-software/async-droid

456 B.K. Ozkan et al.

detect thrown exceptions and assertion violations. Focusing on the systematic
exploration of alternate schedules of asynchronously-executing methods, and pri-
oritizing those schedules derived from few re-orderings, our technique uncovers
many violations quickly, and uncovers all violations given enough time.

Our prototype implementation explores all deviations from a base schedule
within a user-specified bound. In addition to providing a default thread sched-
uler from which the base schedule can be generated, we also provide an inter-
face allowing users to implement their own scheduler to guide the exploration
process along their own insights. Besides control over the thread schedules, our
implementation can also record a given sequence of user events, and then replay
the same sequence events along alternate thread schedules. We implement both
scheduler control and event recording/replaying via program instrumentation,
without modifying Android runtime libraries.

Related Work. Existing approaches to bug detection in Android apps fall into
two basic categories. The first category focuses on UI input testing [1,2,4,9].
Orthogonally to these techniques, which test a single execution of any given UI-
event sequence, our goal is to explore the alternate schedules of execution for a
given Ul-event sequence, thus uncovering elusive concurrency-related bugs. The
second category of techniques investigates race detection [3,7,8,10]. Our work is
complementary to these techniques and it is novel in two respects: it is a dynamic
analysis rather than static, and it does not report false positives.

While prioritized systematic exploration of concurrent program executions
has been studied before [5,11], the adaptation to event driven programs poses
some specific difficulties. A tool must explore different possible concurrent behav-
iors for a given, fixed user interaction with the program. This requires the record-
ing and replay of user input events while exploring alternate schedules. More-
over, it is nontrivial to design effective thread schedulers for the typical Android
“looper” threads, which do nothing but execute the handlers of received mes-
sages.

2 Design and Implementation

The basic functionality of AsyncDroid is to repeat a sequence of UI events over a
systematic enumeration of thread schedules. We achieve this functionality via a
program instrumentation which provides explicit control over thread scheduling,
and recording/replaying of UI events for given thread schedules.

2.1 Recording and Repeating User Events

To record the user events, we instrument each visible Ul component with an
additional event handler. When run in record mode, the instrumented handler
records each event and forwards it to the original handler. This allows us to
capture both direct user interaction, and simulated “monkey” interaction.

In replay mode, we use an input repeater which reads and replays the
recorded events for every thread schedule to be tested. The input repeater runs

Systematic Asynchrony Bug Exploration for Android Apps 457

in its own thread and feeds the user events to the application concurrently to
the execution of the other threads. AsyncDroid schedules this thread as well as
the other application threads, controlling the interleaving between sending an
event and the execution in the other threads.

In approaches in the literature, the user events are recorded by saving the
coordinates of an input event and replayed by giving the same input on the same
coordinates [6]. However, the timing of the inputs differ in each schedule and a
UI component might not be visible at a time we want to replay it. Repeating
an event using only the coordinates might result in the invocation of a wrong
event, since a different view might exist on the original event’s input coordinates
at the time of replay. To overcome this, we use an abstraction of an input event
close to the application semantics. Our event abstraction keeps the path to Ul
component of the user event. While replaying an event, we make sure that the
recorded path to an event fully matches to the view on the currently visible UI.

2.2 Thread Scheduling

AsyncDroid controls the scheduling of the input repeater, Ul, and background
threads. To explore different execution schedules, AsyncDroid treats the begin-
nings and ends of asynchronous methods as scheduling points, only preempting
threads at these points to determine a complete schedule.

AsyncDroid’s default scheduler runs threads until becoming blocked in a
round-robin fashion. The input repeater thread is enabled if it has more events
to replay and the next event’s UI component is visible. Similarly, the Ul thread
and other threads are enabled if they have some tasks to execute. In Android,
it is likely that the Ul thread have repetitive runtime tasks (for interprocess
communication, UI update, etc.) in its queue and never becomes disabled during
an execution. In this case, the standard preemption bounding approach would
spend a preemption to switch from the Ul thread. Our tool blocks a thread and
switches to another thread when the message queue of a current thread is empty
or it has only recurring Android-runtime messages.

Though the default scheduler runs the threads in round-robin fashion, we use
delay bounding [5] to prioritize our search of alternate executions. For a given
bound k, we systematically explore all executions which correspond to thread
schedules which are k-delay deviations from the default schedule.

AsyncDroid also allows the programmer to specify his own default scheduler
by implementing certain scheduling hooks. To this end, we provide an interface
which exposes the current list of application threads, whether each thread is
blocked, the list of pending events in the input-repeater thread, and the lists of
pending tasks in the Ul and background threads. The programmer and access
these lists in deciding which thread to dispatch at any given scheduling point.

3 Case Studies

As an instructive case study, we investigate an asynchrony bug in the Vlille
Checker app used with the public bicycle-sharing program in the city of Lille,

458 B.K. Ozkan et al.

France.? The app displays a list of bicycle stations together with their status and
information. The user can (un)mark a station as a favorite, and limit their view
to favorite stations. While the list is being viewed, station information is updated
asynchronously in a background thread to keep the Ul thread responsive.

The following scenario triggers our bug, depending on the execution order
of asynchronous methods. Figurel shows the relevant application code with
distinguished statements labeled L1, 1.2, and L3.

— The user clicks to view their favorites list.

L1 To initiate the status update of the favorite stations which are currently
visible on the screen, the application creates a sublist of visible favorite
stations. Crucially for the bug in question, this sublist is not represented by
a new data structure, but is instead backed by the same data structure as
the full list of favorite stations.

— The user clicks to remove a station from the favorites list.

L2 An asynchronous task executing on the Ul thread removes the station from
the favorites list.

L3 An asynchronous task executing on a background thread iterates over the
visible favorites list in order to update their statuses.

Since L2 and L3 are executed asynchronously on separate threads, they can exe-
cute in any order, depending on hard-to-determine system scheduling factors. In
the case that L2 is executed before L3, the ArrayList constructor throws a Con-
currentModificationFxception as the favorites list backing the visible favorites
sublist has been modified.

Ul thread Background thread

private void updatevisibleItems() { yprotected List<Station> doInBackground(List<Station>... params) {
int 1 = getlastVisiblePosition(); L3: List<Station> newlist = new ArrayList(params);

int f = getFirstVisiblePosition(); List<Station> stations = Collections.synchronizedList(newList);

List<Station> subStations = stations.sublast(f, 1); for (Station station : stations) { \

asyncTask = new StationsAsyncTask(); updateStation(station); \

asyncTask.execute(subStations); ..

L1:

=

}

return stations;

) (

public void onClick(View v) {

L2: ;é;tions.remove(pos); v
The original list of the sublist is modified.

i Throws ConcurrentModificationException.

Fig. 1. An exception thrown only in executions of the Vlille Checker app in which the
list removal at Statement L2 is executed between the sublist creation at L1 and its use
in the constructor at L3 of the asynchronously-called doInBackground method.

To produce the bug, we record the following event sequence and systemati-
cally explore possible schedules of asynchronous methods:?

2 The bug report: https://github.com/ojacquemart /vlilleChecker /issues/60.
3 The test which produces this bug is available on AsyncDroid’s Github repository.

https://github.com/ojacquemart/vlilleChecker/issues/60

Systematic Asynchrony Bug Exploration for Android Apps 459

click on a menu item to display all stations,

click on a station to add it into the favorites,

click on a menu item to display the favorite stations, and
click on the favorite station to remove it from the favorites.

Ll e s

Note that many schedules of asynchronous methods for this event sequence do
not expose the bug. For instance, without incurring delays, AsyncDroid’s default
scheduler runs each thread until it is no longer enabled before moving on to
the next thread in a round-robin fashion. The input repeater thread becomes
blocked after Event 3 is actuated, since Event 4 is not enabled until the favorite
stations list becomes visible. Next, the scheduler executes the pending UI-thread
tasks, causing the asynchronous dolnBackground method to become pending
on the background thread. Once the UI thread becomes idle, the scheduler exe-
cutes the background task to completion before returning to the input repeater
thread where Event 4 is enabled, the favorite stations list having been updated
and made visible. In this way, our default scheduler, without delaying, executes
Statement L3 before L2, and does not expose the bug.

However, by enumerating all 1-delay executions, AsyncDroid does discover
an execution in which the ConcurrentModificationEzxception is thrown, by delay-
ing the background thread before executing Statement L3. This delay causes our
default scheduler to return to the input repeater thread where Event 4 is enabled,
due to the Ul thread having made the favorite stations list visible. After actu-
ating Event 4, we return to the UI thread to process its onClick handler before
returning to the background thread. This 1 delay execution thus executes State-
ment L2 before L1, and throws the exception.

We also applied our tool to the ACV comics and image viewer app?, the
Jamendo online music player app®, and a hand-crafted microbenchmark with
an injected asynchrony bug. We test the ACV app by providing tap inputs to
browse, view, and rotate images. Since tap inputs are always enabled in this app,
independently of the app state, our replay is not guaranteed to be faithful to the
original event sequence, e.g., in the case that certain taps are ignored in certain
states. This limitation could be overcome by more precise tracking of UI state.

The Jamendo music player app is tested by browsing, selecting and playing a
radio channel. While playing music, recurring messages are sent to the Ul thread
to display track progress. As AsyncDroid repetitively runs all schedules without
restarting the app, these recurring tasks remain in the message queue after the
execution of a schedule completes. This causes the next schedule to start with
some leftover tasks. AsyncDroid overcomes this problem by calling an optional
finalizer method implemented by the programmer in his app itself to clean up the
tasks in the message queues. We tested the Jamendo app by adding a finalizer
method into its source code.

Our hand-crafted microbenchmark inserts into and deletes from a list of
items, in response to user events. When the user wants to insert an item, it

* https://github.com/robotmedia/droid-comic-viewer.
5 https://github.com/telecapoland/jamendo-android.

https://github.com/robotmedia/droid-comic-viewer
https://github.com/telecapoland/jamendo-android

460 B.K. Ozkan et al.

Table 1. Quantitative results of our case studies.

of events | # of switch | # of sch. dec | 0 delay 1 delay
of conf. | Bug? | # of conf. | Bug?

Vlille checker 5 9 29 30 No 59 Yes

7 8 33 34 No 69 Yes
ACV comic viewer 6 9 19 14 No 31 No

8 9 23 19 No 40 No
Jamendo music player | 3 23 100 69 No 87 No

5 21 37 24 No 61 No
Microbenchmark 3 5 7 8 No 10 Yes

5 5 11 12 No 19 Yes

increases the items count and performs the insertion in a background thread.
If the removal of the item in the last index is processed before the background
thread, the app throws an IndezOutOfBoundsEzception.

Table 1 lists the quantitative results of our case studies. As a rough measure
of behavioral coverage, we measure the number of “abstract” program config-
urations encountered in each exploration, which distinguish only the number
of asynchronous tasks pending on each thread. For each run, the table depicts
the length of a fixed input event sequence, the number of context switches and
the number of scheduling decision points encountered in the zero-delay execu-
tion, and the number of abstract configurations encountered. AsyncDroid quickly
reproduces the known, yet previously nondeterministically-occurring, bugs in the
Vlille Checker and our microbenchmark in a matter of minutes using a single
delay. While we do not know whether the ACV and Jamendo apps contain a
bug, AsyncDroid does not discover one within a single delay.

4 Limitations and Future Work

Applying systematic concurrency exploration to event driven programs faces
the fundamental obstacle that some schedules may become infeasible due to
the unavailability of a given UI component at a given time. When the compo-
nent corresponding to a scheduled-for-replay event is not visible on the screen,
we delay its activation, disrupting the intended schedule. This limitation raises
research questions about how to integrate the treatment of UI events in concert
with systematic concurrency exploration.

Controlling all scheduling decisions is a key implementation challenge. In our
current prototype, we focus on the systematic analysis of interleavings between
the asynchronous methods created by the given app, and leave the scheduling of
other asynchronous methods (e.g., periodic system events) uncontrolled.

AsyncDroid currently only supports recording and replaying of certain types
of UI events: we handle simple clicks, but not text inputs nor gestures. Capturing
a wider set of UI events will allow us to test a larger set of applications. Our
future work also involves developing coverage metrics to evaluate how various
scheduling strategies compare with respect to coverage of program behaviors.

Systematic Asynchrony Bug Exploration for Android Apps 461

References

10.

11.

Anand, S., Naik, M., Harrold, M.J., Yang, H.: Automated concolic testing of smart-
phone apps. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. pp. 59:1-59:11. FSE 2012, ACM,
New York, NY, USA (2012). http://doi.acm.org/10.1145/2393596.2393666

Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing
of android apps. In: Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications. pp.
641-660. OOPSLA 2013, ACM, New York, NY, USA (2013). http://doi.acm.org/
10.1145/2509136.2509549

Bielik, P.: Effective Race Detection for Android. Master’s thesis, ETH Zurich,
Switzerland (2014)

Choi, W., Necula, G., Sen, K.: Guided GUI testing of Android apps with minimal
restart and approximate learning. In: Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
and Applications. pp. 623-640. OOPSLA 2013, ACM, New York, NY, USA (2013).
http://doi.acm.org/10.1145/2509136.2509552

Emmi, M., Qadeer, S., Rakamarié¢, Z.: Delay-bounded scheduling. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 411-422. POPL 2011, ACM, New York, NY, USA
(2011). http://doi.acm.org/10.1145/1926385.1926432

Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: Timing- and touch-sensitive
record and replay for Android. In: Proceedings of the 2013 International Conference
on Software Engineering. pp. 72-81. ICSE 2013, IEEE Press, Piscataway, NJ, USA
(2013). http://dl.acm.org/citation.cfm?id=2486788.2486799

Hsiao, C.H., Yu, J., Narayanasamy, S., Kong, Z., Pereira, C.L., Pokam, G.A.,
Chen, P.M., Flinn, J.: Race detection for event-driven mobile applications. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 326-336. PLDI 2014, ACM, New York, NY, USA
(2014). http://doi.acm.org/10.1145/2594291.2594330

Lin, Y., Radoi, C., Dig, D.: Retrofitting concurrency for Android applications
through refactoring. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 341-352. FSE 2014, ACM,
New York, NY, USA (2014). http://doi.acm.org/10.1145/2635868.2635903
Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for
Android apps. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. pp. 224-234. ESEC/FSE 2013, ACM, New York, NY, USA
(2013). http://doi.acm.org/10.1145/2491411.2491450

Maiya, P., Kanade, A., Majumdar, R.: Race detection for Android applications. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 316-325. PLDI 2014, ACM, New York, NY, USA
(2014). http://doi.acm.org/10.1145/2594291.2594311

Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 446-455. PLDI 2007,
ACM, New York, NY, USA (2007). http://doi.acm.org/10.1145/1250734.1250785

http://doi.acm.org/10.1145/2393596.2393666
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2509136.2509552
http://doi.acm.org/10.1145/1926385.1926432
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://doi.acm.org/10.1145/2594291.2594330
http://doi.acm.org/10.1145/2635868.2635903
http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2594291.2594311
http://doi.acm.org/10.1145/1250734.1250785

	Systematic Asynchrony Bug Exploration for Android Apps
	1 Introduction
	2 Design and Implementation
	2.1 Recording and Repeating User Events
	2.2 Thread Scheduling

	3 Case Studies
	4 Limitations and Future Work
	References

