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Abstract
Efficient implementations of concurrent objects such as semaphores, locks, and atomic collec-
tions including stacks and queues are vital to modern computer systems. Programming them is
however error prone. To minimize synchronization overhead between concurrent object-method
invocations, implementors avoid blocking operations like lock acquisition, allowing methods to
execute concurrently. However, concurrency risks unintended inter-operation interference. Their
correctness is captured by observational refinement which ensures conformance to atomic refer-
ence implementations. Formally, given two libraries L1 and L2 implementing the methods of
some concurrent object, we say L1 refines L2 if and only if every computation of every program
using L1 would also be possible were L2 used instead.

Linearizability [11], being an equivalent property [8, 5], is the predominant proof technique
for establishing observational refinement: one shows that each concurrent execution has a linear-
ization which is a valid sequential execution according to a specification, given by an abstract
data type or atomic reference implementation.

However, checking linearizability is intrinsically hard. Indeed, even in the case where method
implementations are finite-state and object specifications are also finite-state, and when a fixed
number of threads (invoking methods in parallel) is considered, the linearizability problem is
EXPSPACE-complete [9], and it becomes undecidable when the number of threads is unboun-
ded [3]. These results show in particular that there is a complexity/decidability gap between
the problem of checking linearizability and the problem of checking reachability (i.e., the dual
of checking safety/invariance properties), the latter being, PSPACE-complete and EXPSPACE-
complete in the above considered cases, respectively.

We address here the issue of investigating cases where tractable reductions of the observational
refinement/linearizability problem to the reachability problem, or dually to invariant checking,
are possible. Our aim is (1) to develop algorithmic approaches that avoid a systematic exploration
of all possible linearizations of all computations, (2) to exploit existing techniques and tools for
efficient invariant checking to check observational refinement, and (3) to establish decidability
and complexity results for significant classes of concurrent objects and data structures.

We present two approaches that we have proposed recently. The first approach [5] introduces
a parameterized approximation schema for detecting observational refinement violations. This
approach exploits a fundamental property of shared-memory library executions: their histories
are interval orders, a special case of partial orders which admit canonical representations in
which each operation o is mapped to a positive-integer-bounded interval I(o). Interval orders are
equipped with a natural notion of length, which corresponds to the smallest integer constant for
which an interval mapping exists. Then, we define a notion of bounded-interval-length analysis,
and demonstrate its efficiency, in terms of complexity, coverage, and scalability, for detecting
observational refinement bugs.
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The second approach [4] focuses on a specific class of abstract data types, including common
concurrent objects and data structures such as stacks and queues. We show that for this class of
objects, the linearizability problem is actually as hard as the control-state reachability problem.
Indeed, we prove that in this case, the existence of linearizability violations (i.e., finite compu-
tations that are not linearizable), can be captured completely by a finite number of finite-state
automata, even when an unbounded number of parallel operations is allowed (assuming that
libraries are data-independent).

Related work. Several semi-automated approaches for proving linearizability, and thus obser-
vational refinement, have relied on annotating operation bodies with linearization points [2, 12,
13, 15, 16], to reduce the otherwise-exponential space of possible history linearizations to one
single linearization. These methods often rely on programmer annotation, and do not admit
conclusive evidence of a violation in the case of a failed proof.

Existing automated methods for proving linearizability of an atomic object implementation
are also based on reductions to safety verification [1, 10, 15]. Abdulla et al. [1] is and Vafei-
adis [15] consider implementations where operation’s linearization points are fixed to particular
source-code locations. Such approaches are incomplete since not all implementations have fixed
linearization points (see for instance [7]). Aspect-oriented proofs [10] reduce linearizability to
the verification of four simpler safety properties. However, this approach has only been applied
to queues, and has not produced a fully automated and complete proof technique. Dodds et
al. [7] prove linearizability of stack implementations with an automated proof assistant. Their
approach does not lead to full automation however, e.g., by reduction to safety verification.

Automated approaches for detecting linearizability violations such as Line-Up [6] enumerate
the exponentially-many possible history linearizations. This exponential cost effectively limits
such approaches to executions with few operations. Colt [14]’s approach mitigates this cost
with programmer-annotated linearization points, as in the previously-mentioned approaches, and
ultimately suffers from the same problem: a failed proof only indicates incorrect annotation.
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