
Decision Problems for the Verification
of Real-Time Software�

Michael Emmi and Rupak Majumdar

University of California, Los Angeles
{mje, rupak}@cs.ucla.edu

Abstract. We study two questions in the theory of timed automata
concerning timed language inclusion of real-time programs modeled as
timed pushdown automata in real-time specifications with just one clock.
We show that if the specification B is modeled as a timed automaton
with one clock, then the language inclusion problem L(A) ⊆ L(B) for a
timed pushdown automaton A is decidable. On the other hand, we show
that the universality problem of timed visibly pushdown automata with
only one clock is undecidable. Thus there is no algorithm to check lan-
guage inclusion of real-time programs for specifications given by visibly
pushdown specifications with just one clock.

1 Introduction

Timed automata [4] are a standard modeling formalism for real-time systems.
Alur and Dill [4] showed the untimed reachability problem for timed automata
is decidable. However, the universality problem (whether all timed traces are
accepted) is undecidable, and therefore the timed language inclusion problem
(whether all finite timed traces accepted by A are also accepted by B) is also
undecidable. These bounds were recently tightened. The timed language inclu-
sion problem L(A) ⊆ L(B) for timed automata A and B is decidable if B has
at most one clock [13], while the proof of [4] shows two clocks are sufficient for
the universality problem to become undecidable. On the other hand, over infi-
nite timed words, one clock is enough to make the language inclusion problem
undecidable [2].

When verifying real-time software, the basic model of timed automata must
be augmented by a program stack to model procedure calls. In this case, the
model is a timed pushdown automaton: a timed automaton augmented with
a stack. Untimed reachability is decidable for timed pushdown automata [8],
in fact, the binary reachability relation for timed pushdown automata is also
decidable [9]. Since the timed language inclusion problem L(A) ⊆ L(B) is un-
decidable for timed automata if B has more than one clock, one remaining
open question is when A is a timed pushdown automaton and B is a timed
automaton that has exactly one clock (if B has no clocks, then the question
� This research was supported in part by the grants NSF CCR-0427202 and NSF

CNS-0541606.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 200–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.

Decision Problems for the Verification of Real-Time Software 201

is decidable by a reduction to reachability, using closure properties of finite
automata). We show that this problem is decidable, by extending the proof
of [13]. The question is not just of theoretical interest. Many network pro-
tocol specifications can be modeled as timed automata with just one clock,
and their software implementations are usually modeled as timed pushdown
automata [12].

The main technical content of our proof is a generic decidability result for well-
structured infinite software systems that is of independent interest in software
verification. A large class of infinite state systems have been shown decidable
using well quasi-ordering relations on the state space [1, 3, 10]. However, these
formalisms are not immediately applicable to software verification, where a pro-
gram is organized into procedures with possibly recursive calls. For software with
a finite data state space, the standard technique to compute the set of reach-
able states is context free reachability [14, 7]. Our result unifies the two worlds
by providing a context free reachability algorithm for infinite data state spaces,
whose termination is proved using well quasi-ordering relations of [1, 10].

What if we extend the expressive power of the specification formalism be-
yond timed automata? The universality (and so language inclusion) problem for
timed pushdown automata is undecidable, since the corresponding problems are
already undecidable for (untimed) pushdown automata. We must therefore con-
tend ourselves with formalisms of lesser expressive power. One such candidate
is visibly pushdown automata [6] —where the stack pushes and pops are deter-
mined explicitly by the input alphabet. (Untimed) visibly pushdown automata
are already sufficient to specify many interesting properties of software systems
[6, 5]. Moreover, they have the nice decidability properties akin to regular lan-
guages: for example, universality and language inclusion problems are decidable
for (untimed) visibly pushdown automata, and one can hope for similar decid-
ability results in the timed case. We therefore study the universality problem
for timed visibly pushdown automata with one clock. Unfortunately, we exhibit
that this problem (and hence the language inclusion problem even when there
is exactly one clock) is undecidable, thus precluding algorithmic solutions to the
problem.

Our undecidability result encodes the operation of two counter machines using
a timed visibly pushdown automaton with exactly one clock. We cannot directly
apply the undecidability proof for the universality of pushdown automata, since
the standard proof [11] is not visibly pushdown (indeed, universality is decidable
for visibly pushdown automata). Instead, we represent a configuration of a two
counter machine using two “identical” copies, one with the pop alphabet of the
visibly pushdown automaton, and the other with the push alphabet, and use the
single clock to make sure that the two copies are identical.

Thus, our results show that model checking real-time software modeled as
timed pushdown automata against real time specifications with one clock and
no stack remains decidable, however, the problem becomes undecidable as soon
as the specification formalism is allowed a visibly pushdown stack.

202 M. Emmi and R. Majumdar

2 Timed Pushdown Automata

Given an alphabet Σ, a timed word (σ, τ) ∈ Σ∗ × R
∗ of length n is a word

σ = σ1σ2 . . . σn paired with a time sequence τ = τ1τ2 . . . τn such that τ is
monotonically increasing. A timed language is a set of timed words.

Let C be a set of clock variables. A clock constraint φ is defined inductively
by

φ := x ≤ c | c ≤ x | ¬φ | φ1 ∧ φ2

where x ∈ C and c ∈ Q. Φ(C) is the set of all clock constraints over C. For a set
of clocks C, a clock valuation is a function ν : C → R which describes the values
of each clock c ∈ C at an instant. A clock constraint φ ∈ Φ(C) is satisfied by the
clock valuation ν (written ν � φ) if [ν(c)/c]c∈Cφ is true. Given a set of clocks λ
and a clock valuation ν, let ν ↓ λ be defined as

(ν ↓ λ)(c) =
{

0 when c ∈ λ
ν(c) otherwise

Given a clock valuation ν and a time t ∈ R define (ν + t)(c) = ν(c) + t.
A timed pushdown automaton (TPDA) is a tuple M = (Σ̃, Γ, Q, S, F, C, δ),

where Σ̃ is a finite alphabet of input symbols, Γ is finite stack alphabet (we
write Γε = Γ ∪{ε} where ε is a fresh symbol not in Γ), Q is a finite set of states,
S ⊆ Q is a set of start states, F ⊆ Q is a set of final states, C is a finite set of
real-valued clocks, and δ ⊆ (Q × Σ × Γε × Φ(C) × Q × Γε × 2C) is a discrete
transition relation.

A transition (q, a, γ, φ, q′, γ′, λ) ∈ δ is taken if the current location is q, the
input symbol is a, the stack is popped and the popped symbol is γ (if γ = ε,
then the stack is not popped), and the current valuation ν satisfies φ, and then
the new location is q′, the symbol γ′ is pushed on the stack (if γ′ = ε, then
no symbol is pushed) and the new clock valuation is ν′ = ν ↓ λ. Given a
timed word (σ, τ) of length n, a run of a TPDA M on (σ, τ) is a sequence
(q1, ν1, γ1), (q2, ν2, γ2), . . . , (qn+1, νn+1, γn+1) ∈ (Q × (C → R) × Γ ∗)∗ if for each
i ∈ {1, . . . , n} there exists t ∈ R such that (qi, σi, γ, φ, qi+1, γ̂, λ) ∈ δ, νi � φ,
νi+1 = νi ↓ λ+t, and there is some γ′ ∈ Γ ∗ such that γi = γ′ ·γ and γi+1 = γ′ · γ̂.
A run ρ = (q1, ν1, γ1) . . . (qn+1, νn+1, γn+1) of a TPDA M is initialized if q1 ∈ S,
ν1(c) = 0 for all c ∈ C, and γ1 = ε. The run ρ is accepting if qn+1 ∈ F . A timed
word (σ, τ) of length n is accepted by a TVPA M if there exists a run of M
on (σ, τ) that is initialized and accepting. The timed language of a TPDA M ,
denoted L(M), is the set of all timed words that are accepted by M . A TPDA
M is called universal if L(M) = (Σ̃ × R)∗, i.e., if it accepts all timed words.

A TPDA M is visibly pushdown (TVPA) if the input alphabet Σ̃ can be
partitioned into three disjoint sets Σ̃ = Σint ∪ Σc ∪ Σr of internal, call, and
return input symbols respectively, and δ ⊆ (Q × Σint × Φ(C) × Q × 2C) ∪ (Q ×
Σc ×Φ(C)×Q×Γ ×2C)∪(Q×Σr ×Γ ×Φ(C)×Q×2C) is the visible pushdown
transition relation. The transitions of a TVPA come in three varieties. Let ν be a
clock valuation. An internal transition (q, a, φ, q′, λ) ∈ δ at clock valuation ν is a
move on the (internal) input symbol a from the state q to q′ such that ν satisfies

Decision Problems for the Verification of Real-Time Software 203

φ and the resulting clock valuation ν′ = ν ↓ λ. A call transition (q, a, φ, q′, γ, λ)
is a move on the (call) input symbol a from q to q′ where ν satisfies φ, the clock
valuation is updated from ν to ν ↓ λ, and γ is pushed on the stack. A return
transition (q, a, γ, φ, q′, λ) is a move on the (return) input symbol a and stack
symbol γ, from q to q′ where φ is satisfied and ν is updated to ν ↓ λ. Given
a timed word (σ, τ) of length n, a run of the TVPA M on (σ, τ) is a sequence
(q1, ν1, γ1), (q2, ν2, γ2), . . . , (qn+1, νn+1, γn+1) ∈ (Q × (C → R) × Γ ∗)∗ if for each
i ∈ {1, . . . , n} there exists t ∈ R such that one of the following holds:

1. (qi, σi, φ, qi+1, λ) ∈ δ, νi � φ, νi+1 = νi ↓ λ + t, and γi+1 = γi

2. (qi, σi, φ, qi+1, γ, λ) ∈ δ, νi � φ, νi+1 = νi ↓ λ + t, and γi+1 = γiγ
3. (qi, σi, γ, φ, qi+1, λ) ∈ δ, νi � φ, νi+1 = νi ↓ λ + t, and γi+1γ = γi

Initialized and accepted runs, languages, and universality for TVPAs are defined
by restriction from TPDAs. A TVPA is a timed automaton if Σc = Σr = ∅.

The universality problem for TPDAs (resp. TVPAs) takes as input a TPDA
(resp. TVPA) M , and returns “yes” if M is universal, and returns “no” otherwise.
Notice that the universality problem for TPDAs is undecidable, even if there is
no clock, i.e., if C = ∅, since the universality of PDAs is undecidable [11].

3 One-Clock Language Inclusion Problem

We now show that the language inclusion problem L(B) ⊆ L(A) where B is a
TPDA and A is a timed automaton with one clock is decidable. This extends
the result of [13]. Our main technical tool is a decidability result for context free
reachability for well-structured transition systems.

3.1 Well-Structured Infinite Pushdown Automata

A quasi-order (or preorder) ≤ over a set A is a reflexive and transitive relation
≤⊆ A × A. A well-quasi-order (wqo) is a quasi-order where for every infinite
sequence a1, a2, a3, . . . from A, there exist i, j ∈ N where i < j and ai ≤ aj . We
say that a dominates a′ if a′ ≤ a.

An infinite pushdown automaton (∞PDA)M is a quintuple M =(Q, Σ, Γ, S, δ)
where Q is an infinite set of states, Σ and Γ are input and tape alphabets, S ⊆ Q
is a finite set of initial states, and δ ⊆ (Q×Σ×Q)∪(Q×Σ×Q×Γ)∪(Q×Σ×Γ×Q)
is a transition relation. We say M is finitely branching if for all q ∈ Q, {(q, σ, q′) ∈
δ | σ ∈ Σ, q′ ∈ Q} ∪ {(q, σ, q′, γ) ∈ δ | σ ∈ Σ, q′ ∈ Q, γ ∈ Γ} ∪ {(q, σ, γ, q′) ∈ δ |
σ ∈ Σ, γ ∈ Γ, q′ ∈ Q} is a finite set. Given a quasi-order ≤⊆ Q × Q we say that
≤ is strictly (downward) compatible with δ if for all p ≤ q:

(i) if (q, σ, q′) ∈ δ for some q′ ∈ Q then there exists p′ ∈ Q such that (p, σ, p′) ∈
δ and p′ ≤ q′;

(ii) if (q, σ, q′, γ) ∈ δ for some q′ ∈ Q and γ ∈ Γ then there exists p′ ∈ Q such
that (p, σ, p′, γ) ∈ δ and p′ ≤ q′; and

(iii) if (q, σ, γ, q′) ∈ δ for some q′ ∈ Q and γ ∈ Γ then there exists p′ ∈ Q such
that (p, σ, γ, p′) ∈ δ and p′ ≤ q′.

204 M. Emmi and R. Majumdar

A well-structured infinite pushdown automaton (∞�PDA) M = (Q, Σ, Γ, S, δ, �)
is a finitely branching infinite pushdown automaton where �⊆ Q × Q is a wqo
over the set of states Q that is strictly compatible with δ.

Let M be a well-structured infinite pushdown automaton over states Q, and
let � be a well-quasi-order over Q. Define �-reachability to be the decision
problem of whether or not for a given state q ∈ Q there exists a state q′ ∈ Q
such that q′ � q and q′ is reachable from an initial state of M .

Theorem 1. The �-reachability problem is decidable for well-structured infinite
pushdown automata with decidable �.

Proof. The algorithm �-Reachability shown in Figure 1 computes the set Paths
⊆ S × Q. The set Paths contains pairs of states (s, q) where s is a start state,
and there is some series of transitions from M in which to arrive at q, taking into
account constraints on stack symbols. Thus the pair (s, q) ∈ Paths corresponds
to the existence of a path from s to q. To see that there is a corresponding pair
in Paths for every reachable state, if a state q remains unexplored either Update

subroutine Update(q, p, s)
if �b ∈ Basis.b � q then

Basis := Basis ∪ {q}
if q ∈ Basis and (p � Paths or s � Summaries) then

Paths := Paths ∪ p
Summaries := Summaries ∪ s
ToExplore := ToExplore ∪ {q}

algorithm �-Reachability(M = (Q, Σ, Γ, S, δ, �))
let Basis := {q | q ∈ S}

ToExplore := {q | q ∈ S}
Paths := {(q, q) | q ∈ S}
Summaries := ∅

in until ToExplore = ∅ repeat
remove some q from ToExplore
for each q′ ∈ Q and σ ∈ Σ where (q, σ, q′) ∈ δ do

let p = {(q′′, q′) | (q′′, q) ∈ Paths}
s = {(q′′, q′)γ | (q′′, q)γ ∈ Summaries}

in Update(q′, p, s)
for each q′ ∈ Q and σ ∈ Σ and γ ∈ Γ where (q, σ, q′, γ) ∈ δ do

let p = {(q′′, q′) | (q′′, q) ∈ Paths}
s = {(q, q′)γ}

in Update(q′, p, s)
for each q′ ∈ Q and σ ∈ Σ and γ ∈ Γ where (q, σ, γ, q′) ∈ δ do

let p = {(q′′, q′) | ∃q′′′ ∈ Q where
(q′′, q′′′) ∈ Paths and (q′′′, q)γ ∈ Summaries}

s = {�q′′, q′�γ | (q′′, q)γ ∈ Summaries}
in Update(q′, p, s)

Fig. 1. Algorithm to decide �-reachability

Decision Problems for the Verification of Real-Time Software 205

was never invoked with q, or there is some state q′ which is dominated by q, and
q′ is explored. In the latter case, since � is compatible with δ, we can be sure
that for any state p which q could have transitioned to, there will be some state
p′ � p which q′ could transition to. If Update is never invoked with q then either
there is no explored state which made a transition to q, or at some point along
a path to q there is a state which dominates a state that is explored. Thus to
decide whether a given state p ∈ Q is �-reachable in M , it suffices to find a pair
(s, p′) from the finite set Paths such that p′ � p.

To show that the algorithm �-Reachability indeed terminates in a finite num-
ber of steps, consider the following argument. Since � is a wqo, there is no infinite
strictly decreasing sequence q1 � q2 � q3 � . . . from Q, and so any number of
repeated invocations of the subroutine Update can only add a finite number of
states to the set Basis. Because Basis is always a finite set, and only states
from Basis are considered in the sets Paths, Summaries and ToExplore, these
sets are also finite; thus the second phase of the subroutine Update is only in-
voked a finite number of times, and only a finite sequence of states is added
to ToExplore. For each state that is explored there are only a finite number
of successors (by the definition of ∞PDA.) Combined with a finite bound on
the number of states inserted into ToExplore, it is clear that the algorithm
�-Reachability terminates in a finite number of steps.

3.2 Decidability of Language Inclusion

We now show the decidability of language inclusion when the specification is a
timed automaton with one clock and the implementation a TPDA. Our proof
follows that of [13]. The idea is to construct an infinite pushdown automaton
by a product construction between A and B, in which we identify “bad” states
as product states which are accepting in B, and non-accepting in A. Then we
apply Theorem 1 to decide if any bad states are reachable. If some bad state is
reachable, then B accepts some string which A does not, and L(B) � L(A). If
there are no reachable bad states, then we know L(B) ⊆ L(A).

Theorem 2. For a single-clock timed automaton A and timed pushdown au-
tomaton B, L(B) ⊆ L(A) is decidable.

Proof. Given a single-clock timed automaton A=(QA, Σ, SA, FA, CA ={x}, δA),
and a TPDA B = (QB, Σ, Γ, SB, FB, CB , δB), we now define a ∞�PDA P which
is the product automaton of a determinized A and non-deterministic B. We
define the product as P = (Q, Σ, Γ, S, δ, �) where

Q = P(QA × (CA → R)) × QB × (CB → R)
S = P(SA × (CA → {0})) × SB × (CB → {0})
δ = {((qA, qB), σ, (q′A, q′B)) | q′B ∈ δ′B(qB , σ), q′A = δ′A(qA, σ)}

∪ {((qA, qB), σ, (q′A, q′B), γ) | (q′B , γ) ∈ δ′B(qB, σ), q′A = δ′A(qA, σ)}
∪ {((qA, qB), σ, γ, (q′A, q′B)) | q′B ∈ δ′B(qB, σ, γ), q′A = δ′A(qA, σ)}

206 M. Emmi and R. Majumdar

and
δ′A(qA, σ) = {(q′, ν′) | (q, ν) ∈ qA, (q, σ, φ, q′, λ) ∈ δA, ν � φ, ν′ = ν ↓ λ}
δ′B((q, ν), σ) = {(q′, ν′) | (q, σ, φ, q′, λ) ∈ δB, ν � φ, ν′ = ν ↓ λ}

∪ {(q′, ν′, γ) | (q, σ, φ, q′, λ, γ) ∈ δB, ν � φ, ν′ = ν ↓ λ}
δ′B((q, ν), σ, γ) = {(q′, ν′) | (q, σ, γ, φ, q′, λ) ∈ δB, ν � φ, ν′ = ν ↓ λ}

are defined for convenience. Note that P is finitely branching since clock valu-
ations are not arbitrarily increased by a transition of A or B; rather they must
either remain constant or be (partially) reset.

As in [13], the wqo � over Q is defined as follows. Without loss of generality we
assume that all numeric values in the clock constraints of A and B are integral.
Define the set of regions Reg = {r0, r

1
0 , r1, r

2
1 , . . . , rK}, where K is the largest

constant appearing in a clock constraint of A and B. For all t ∈ R, let t̄ ∈ [0, 1)
be the fractional part of t (i.e., t̄ = t − �t). Let reg : R → Reg be the function
mapping clock values to regions defined by

reg(t) =

⎧⎨
⎩

rK when t ≥ K
ri when t < K, t̄ = 0 and t = i

ri+1
i when t < K, t̄ �= 0 and i < t < i + 1

.

Let F : Q → P((QA × Reg × [0, 1))∪ (QB × CB × Reg × [0, 1))) be a function
which disassembles the state structure of Q into sets of its constituents:

F ((qA, qB , νB)) = {(η, ν(x)) | (q, ν) ∈ qA, {x} = CA and η = (q, reg(ν(x)))}
∪ {(η, νB(y)) | y ∈ CB and η = (qB, y, reg(νB(y)))}

Now define G to group together tuples with the same clock fraction:

G(q) =
{(⋃

{ρ′ | (ρ′, t) ∈ F (q)}, t
)∣∣∣ (ρ, t) ∈ F (q)

}

and finally let H be defined as

H(q) = ρ1ρ2 . . . ρ|G(q)|,

where (ρi, ti) ∈ G(q) for 1 ≤ i ≤ |G(q)| and ti < ti+1 for 1 ≤ i < |G(q)|.
The codomain of H is the set of finite words on a finite alphabet. By Higman’s
Lemma, this set is well quasi-ordered with respect to the subword ordering �.
We define the quasi-order � as q1 � q2 if and only if H(q1) � H(q2). As shown
in [13], this is a well quasi-ordering on states.

To see that � is strictly compatible with δ consider two states p � q. By
the definition of �, p and q are in the same QA and QB states, and the val-
uations of their corresponding clocks are in the same regions (i.e., they satisfy
the same clock constraints.) Thus any transition that is enabled out of q has a
corresponding transition enabled out of p.

Define Bad = P((QA \ FA) × (CA → R)) × FB × (CB → R) to be the
set of “bad” states of P . Since P is a ∞�PDA with decidable �, Theorem 1
states that �-reachability is decidable on P . Let Paths be computed from
�-Reachability(P). Now the language containment question L(B) ⊆ L(A) is
reduced to finding a state from the finite set {q | (s, q) ∈ Paths} which also
belongs to Bad, and is thus decidable.

Decision Problems for the Verification of Real-Time Software 207

4 Universality of Timed Visibly Pushdown Automata

We now prove a negative result that shows that the specification formalism can-
not be extended from finite state one-clock timed automata to one-clock TVPA.
The universality problem for (untimed) visibly pushdown automata is decid-
able [6]. On the other hand, the universality problem for timed automata with
two clocks is undecidable, and (from [13]) the universality problem for timed
automata with one clock is decidable. We now show that the universality prob-
lem for TVPAs with one clock is undecidable, thus completing the decidability
picture.

The proof is by a reduction from the halting problem for two counter ma-
chines. A two counter machine is a tuple M = (I, C, D) where I : N →
({C, D} × N × N)∪ ({Inc, Dec} × {C, D}) and the domain of I is finite. That is,
M has a finite set of instructions I and counters C and D and at each instruc-
tion M can either increment or decrement one counter and proceed to the next
instruction, or conditionally jump to another instruction upon a given counter
having the value 0. For example the instruction (3, (C, 5, 7)) ∈ I means that the
instruction at location 3 is a jump to location 5 if the value of C is 0, and is
otherwise a jump to location 7. The instruction (5, (Dec, D)) ∈ I means that at
location 5 the value of counter D is decremented before advancing to location 6.

A configuration of M is represented by the triple (l, c, d) ∈ N× N× N where l
is a location and c, d ≥ 0 are the values of counters C and D. The unique initial
configuration is the triple (1, 0, 0). The set of final configurations is {(2, c, d) |
c, d ∈ N}. A run of the two-counter machine M = (I, C, D) is a sequence of
configurations (l1, c1, d1)(l2, c2, d2) . . . (ln, cn, dn) ∈ (N × N × N)∗ where for each
i ∈ {1, 2, . . . , n − 1}, we have

(li+1, ci+1, di+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(li + 1, ci + 1, di) when I(li) = (Inc, C)
(li + 1, ci − 1, di) when I(li) = (Dec, C)
(li + 1, ci, di + 1) when I(li) = (Inc, D)
(li + 1, ci, di − 1) when I(li) = (Dec, D)
(b1, ci, di) when I(li) = (C, b1, b2) and ci = 0
(b2, ci, di) when I(li) = (C, b1, b2) and ci �= 0
(b1, ci, di) when I(li) = (D, b1, b2) and di = 0
(b2, ci, di) when I(li) = (D, b1, b2) and di �= 0

.

A run α1 . . . αn of M is accepting if α1 an initial configuration and αn is a final
configuration.

Theorem 3. Universality of single clock TVPA’s is undecidable.

Proof. We reduce from the accepting problem for two counter machines. For a
two-counter machine M = (I, C, D), fix Σint = {hi | i ∈ dom(I)}, Σc = {fc, gc},
Σr = {fr, gr} and Σ̃ = Σint ∪ Σc ∪ Σr. Given a two-counter machine M , we
build a TVPA N that accepts any string in w ∈ (Σ̃ × R)∗ such that w does
not represent an accepting run of M . The problem of finding the existence of an
accepting run of M is then reduced to verifying that N is not universal (i.e., if
the language of N is the universe, then M has no accepting run).

208 M. Emmi and R. Majumdar

We represent each configuration (i, j, k) of the two-counter machine M by a
timed word Π(i, j, k) = (hif

j
r gk

r gk
c f j

c , τ) where τ1 ∈ N, and τ1 ≤ τj+1 < (τ1 + 1
4)

< τj+2 ≤ τj+k+1 < (τ1 + 1
2) < τj+k+2 ≤ τj+2k+1 < (τ1 + 3

4) < τj+2k+2 ≤
τ2j+2k+1 < (τ1 + 1). In addition we require that for every gr there is a gc that
follows at exactly 1

4 time units, and for every fr there is a fc that follows at
exactly 3

4 time units. A sequence of configurations β1β2 . . . βn is represented as
the concatenation of timed words Π(β1)Π(β2) . . . Π(βn) where for each 1 ≤ i <
n we have βi = (αi, τ i), τ i+1

1 = τ i
1 + 1, and τ1

1 = 1.
We will build N to be a disjunction of several smaller TVPA’s which each try

to find a particular reason why the input string is not an accepting run of M .
The input alphabet of N is Σ̃, the stack alphabet is Γ = {C, D, X, Y }, and there
is one clock x. The state and transition structure is taken as the disjunction of
the smaller automata that we now describe.

One possibility is that the input string does not represent some sequence of
configurations. The regular automaton N¬format accepts strings that are not
matched by the regular expression Rformat = ((h1 ∪ h2 ∪ . . . hm)f∗r g∗rg∗cf∗c)∗,
where m = |dom(I)|.

Another possibility is that at least one timing constraint is broken in the input
string. The single-clock automaton N¬schedule accepts any string in which either
the first symbol does not occur at time 1, or there exist hi, hj ∈ Σint from succes-
sive configurations where hi does not occur exactly one time unit before hj , or any
of the symbols fr, gr, fc, gc don’t fit into the intervals (τ +0, τ + 1

4), (τ + 1
4 , τ + 1

2),
(τ + 3

4 , τ + 1), and (τ + 1
2 , τ + 3

4) respectively, where τ is the time of the nearest
preceding hi. The single-clock automaton N¬schedule is shown in Figure 2.

The regular automaton N¬init accepts strings that start with a configuration
which is not initial. Since an initial configuration has location 1 and both counter
values of 0, the regular expression Rinit = h1 (h1 ∪ h2 ∪ . . . ∪ hm) (h1 ∪ h2 ∪
. . . ∪ hm ∪ fc ∪ fr ∪ gc ∪ gr)∗ matches all strings that represent correct initial
configurations, where m = |dom(I)|.

The regular automaton N¬final accepts strings that end with a configuration
that is not final. Since a final configuration has location 2, the regular expression

h1, . . . , hm, (x �= 1)?

h1, . . . , hm, fc, fr, gc, gr

h1, . . . , hm, (x �= 1)?

h1, . . . , hm, (x = 1)?, x := 0

h1, . . . , hm, (x = 1)?, x := 0
fc, (

3

4
< x < 1)?

gc, (
1

2
< x < 3

4
)?

gr, (
1

4
< x < 1

2
)?

fr, (0 < x < 1

4
)?

Fig. 2. The one-counter automaton N¬schedule recognizes strings that are not properly
timed configuration sequences

Decision Problems for the Verification of Real-Time Software 209

Rfinal = (h1 ∪ h2 ∪ . . . ∪ hm ∪ fc ∪ fr ∪ gc ∪ gr)∗ h2 (fc ∪ fr ∪ gc ∪ gr)∗ matches
all strings that represent correct final configurations, where m = |dom(I)|.

In our textual representation of a configuration there should be a fc fol-
lowing each fr by 3

4 time units, a fr
3
4 time units before each fc, and gr if

and only if there is a gc following at 1
4 time units. The single-clock automata

N¬fr→fc , N¬fr←fc , N¬gr→gc and N¬gr←gc accept strings with unpaired fr’s and
fc’s (or gr’s and gc’s) within a configuration. As an example N¬fr→fc is shown in
Figure 3.

The automata that have been described so far accept when there is some
problem with the format of a particular configuration representation, and ac-
cept timed (or untimed) regular languages. The remaining automata will accept
when there is a particular problem with a sequence of two configurations and
will use the pushdown stack of a visibly pushdown automaton.

For each instruction/location we will use several automata to recognize an in-
valid sequence. For each instruction i that is not a branch instruction, the regular
automaton N i¬step accepts when the following instruction in the configuration
sequence is not i + 1 (e.g., represented by hi+1). For each instruction i which
increments counter C, the automata N i

¬c↑ and N i
c↑∧¬d= accept when counter C

is not incremented, or C is incremented and D does not remain the same. These
automata function by using the pushdown stack to remember how many gc’s and
fc’s appear before the fr’s and gr’s of the following configuration. Note that the
pushdown stack can only compare the counters of successive configurations, since

h1, . . . , hm, fc, fr, gc, gr

fr, x := 0

h1, . . . , hm, fc, fr, gc, grfc, fr, gc, gr, (x < 3

4
)?

h1, . . . , hm, fc, fr, gc, gr, (x > 3

4
)?

Fig. 3. The single-clock automaton N¬fr→fc recognizes strings in which some config-
uration has a symbol fr without a matching symbol fc following at 3

4 time units

fr,⊥

fr, D

fr, Xfr, X

fr,⊥

fr, D

fc/C, gc/D

fr/∗, gr/∗

fc/X, gc/X

fr/∗, gr/∗

h1, . . . , hm

fc/X, gc/X

gr/∗

h1, . . . , hm

fc/X, gc/X

fr/∗, gr/∗

h1, . . . , hm

hi hi + 1

fr/C

Fig. 4. The visibly pushdown automaton N i
¬c↑ recognizes strings in which a configu-

ration invoking instruction (Inc, C) is followed by a configuration where the C counter
is not properly incremented

210 M. Emmi and R. Majumdar

symbols can only be pushed on the stack when fc or gc are read, and can only be
popped from the stack when fr or gr are read. Figure 4 depicts this functionality.

The remaining N i
c↑∧¬d=, N i

¬c↓, N i
c↓∧¬d=, N i¬c=, N i

c=∧¬d↑, N i
c=∧¬d↓, and

N i
c=∧¬d= automata all function in a similar manner, by counting between con-

figurations using the pushdown stack.
The automata N i

c=0∧¬goto−l1
and N i

c �=0∧¬goto−l2
require no clock or stack, and

simply recognize when the configuration following a branch has a location that
does not match with the branch location.

As mentioned earlier, N is simply the disjunction of each of the machines
mentioned above. Since each automaton uses at most one clock, and are either
regular or visibly pushdown, the resulting disjunction N is a single-clock visibly
pushdown automaton. By construction N accepts any string that either doesn’t
encode a sequence of configurations of M , or encodes a sequence of configura-
tions that is not an initialized and accepting run of M . Thus by reduction, the
universality problem for N decides membership for M .

As a corollary, the language inclusion problem L(A) ⊆ L(B) where B is a timed
visibly-pushdown automaton with at least one clock is undecidable. What can
we say if the specification automaton B has no clocks (i.e., is an untimed visibly
pushdown automaton)? If A is a TVPA, then the language inclusion problem
is decidable using the closure properties of visibly pushdown automata (i.e., we
can reduce the problem to the emptiness question L(A∩¬B) = ∅, and A∩¬B is
again a TVPA). On the other hand, if A is a PDA, then the problem is already
undecidable from the untimed case.

5 Conclusions

We have sharpened the frontier for decidability of timed language inclusion.
On the one hand, we show that the language problem remains decidable if the
implementation is strengthened to be a TPDA and the specification is a timed
automaton with at most one clock. On the other hand, if we strengthen the
specification to TVPA with one clock, the problem becomes undecidable.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuan Tsay. General decidability
theorems for infinite-state systems. In LICS 96: Logic in Computer Science, pages
313–321. IEEE Press, 1996.

2. P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and com-
plexity results for timed automata via channel machines. In ICALP 05: Interna-
tional Conference on Automata, Languages, and Programming, LNCS 3580, pages
1089–1101. Springer-Verlag, 2005.

3. P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuan Tsay. Algorithmic analy-
sis of programs with well quasi-ordered domains. Information and Computation,
160:109–127, 2000.

Decision Problems for the Verification of Real-Time Software 211

4. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

5. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS 04: Tools and Algorithms for the Construction and Analysis of
Systems, LNCS 2988, pages 467–481. Springer-Verlag, 2004.

6. R. Alur and P. Madhusudan. Visibly pushdown automata. In STOC 04: Symposium
on Theory of Computing, pages 202–211. ACM Press, 2004.

7. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130. Springer-Verlag,
2000.

8. A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of
systems with continuous variables and unbounded discrete data structures. In
Hybrid Systems II, LNCS 999, pages 64–85. Springer-Verlag, 1994.

9. Z. Dang. Pushdown timed automata: a binary reachability characterization and
safety verification. Theoretical Computer Science, 302:93–121, 2003.

10. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere.
Theoretical Computer Science, 256:63–92, 2001.

11. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, 1979.

12. V.K. Nandivada and J. Palsberg. Timing analysis of TCP servers for surviving
denial-of-service attacks. In RTAS 05: IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 541–549. IEEE Press, 2005.

13. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In LICS 2004: Logic in Computer Science, pages 54–63.
IEEE Press, 2004.

14. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL 95: Principles of Programming Languages, pages
49–61. ACM, 1995.

	Introduction
	Timed Pushdown Automata
	One-Clock Language Inclusion Problem
	Well-Structured Infinite Pushdown Automata
	Decidability of Language Inclusion

	Universality of Timed Visibly Pushdown Automata
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

